Search results
Results from the WOW.Com Content Network
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
Flexibility is the inverse of stiffness. For example, consider a spring that has Q and q as, respectively, its force and deformation: The spring stiffness relation is Q = k q where k is the spring stiffness. Its flexibility relation is q = f Q, where f is the spring flexibility. Hence, f = 1/k.
A spring system can be thought of as the simplest case of the finite element method for solving problems in statics. Assuming linear springs and small deformation (or restricting to one-dimensional motion) a spring system can be cast as a (possibly overdetermined) system of linear equations or equivalently as an energy minimization problem.
Stiffness is the extent to which an object resists deformation in response to an applied force. [ 1 ] The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is.
The springs can be represented by the following equation: p = k y {\displaystyle p=ky} where k {\displaystyle k} is the non-linear spring stiffness defined by the p–y curve, y {\displaystyle y} is the deflection of the spring, and p {\displaystyle p} is the force applied to the spring.
Belleville spring stack in series Belleville spring stack in parallel. Multiple Belleville washers may be stacked to modify the spring constant (or spring rate) or the amount of deflection. Stacking in the same direction will add the spring constant in parallel, creating a stiffer joint (with the same deflection).
The force in the spring is (roughly) the vertical force at the contact patch divided by the motion ratio, and the spring rate is the wheel rate divided by the motion ratio squared. I R = S p r i n g D i s p l a c e m e n t W h e e l D i s p l a c e m e n t . {\displaystyle IR={\frac {SpringDisplacement}{WheelDisplacement}}.}