enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer_coefficient

    Mass transfer coefficients can be estimated from many different theoretical equations, correlations, and analogies that are functions of material properties, intensive properties and flow regime (laminar or turbulent flow). Selection of the most applicable model is dependent on the materials and the system, or environment, being studied.

  3. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    Here, is the overall mass transfer coefficient, which could be determined by empirical correlations, is the surface area for mass transfer (particularly relevant in membrane-based separations), and ˙ is the mass flowrate of bulk fluid (e.g., mass flowrate of air in an application where water vapor is being separated from the air mixture). At ...

  4. Maxwell–Stefan diffusion - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Stefan_diffusion

    A major disadvantage of the Maxwell–Stefan theory is that the diffusion coefficients, with the exception of the diffusion of dilute gases, do not correspond to the Fick's diffusion coefficients and are therefore not tabulated. Only the diffusion coefficients for the binary and ternary case can be determined with reasonable effort.

  5. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    The analogy is useful for both using heat and mass transport to predict one another, or for understanding systems which experience simultaneous heat and mass transfer. For example, predicting heat transfer coefficients around turbine blades is challenging and is often done through measuring evaporating of a volatile compound and using the ...

  6. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  7. Diffusion - Wikipedia

    en.wikipedia.org/wiki/Diffusion

    If the matrix of diffusion coefficients is diagonal, then this system of equations is just a collection of decoupled Fick's equations for various components. Assume that diffusion is non-diagonal, for example, D 12 ≠ 0 {\displaystyle D_{12}\neq 0} , and consider the state with c 2 = ⋯ = c n = 0 {\displaystyle c_{2}=\cdots =c_{n}=0} .

  8. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    h = film coefficient or heat transfer coefficient or convective heat transfer coefficient, L C = characteristic length, which is commonly defined as the volume of the body divided by the surface area of the body, such that = /, k b = thermal conductivity of the body.

  9. Eddy diffusion - Wikipedia

    en.wikipedia.org/wiki/Eddy_diffusion

    The problem of diffusion in the atmosphere is often reduced to that of solving the original gradient based diffusion equation under the appropriate boundary conditions. This theory is often called the K theory, where the name comes from the diffusivity coefficient K introduced in the gradient based theory.