Search results
Results from the WOW.Com Content Network
The BN-350 fast-neutron reactor at Aktau, Kazakhstan.It operated between 1973 and 1994. A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow thermal neutrons used in thermal-neutron reactors.
A fast reactor is therefore more efficient than a thermal reactor for using plutonium and higher actinides as fuel. These fast reactors are better suited for the transmutation of other actinides than thermal reactors. Because thermal reactors use slow or moderated neutrons, the actinides that are not fissionable with thermal neutrons tend to ...
Reactors that use lead or lead-bismuth eutectic can be designed in a large range of power ratings. The Soviet union was able to operate the Alfa-class submarines with a lead-bismuth cooled intermediate-spectrum reactor moderated with beryllium from the 1960s to 1998, which had approximately 30 MW of mechanical output for 155 MW thermal power (see below).
A thermal-neutron reactor is a nuclear reactor that uses slow or thermal neutrons.. ("Thermal" does not mean hot in an absolute sense, but means in thermal equilibrium with the medium it is interacting with, the reactor's fuel, moderator and structure, which is much lower energy than the fast neutrons initially produced by fission.)
The projected increase in uranium price did not materialize, but if uranium demand increases in the future, then there may be renewed interest in fast reactors. The GFR base design is a fast reactor, but in other ways similar to a high temperature gas-cooled reactor. It differs from the HTGR design in that the core has a higher fissile fuel ...
The nuclear fuel cycle employs a full actinide recycle with two major options: One is an intermediate-size (150–600 MWe) sodium-cooled reactor with uranium-plutonium-minor-actinide-zirconium metal alloy fuel, supported by a fuel cycle based on pyrometallurgical reprocessing in facilities integrated with the reactor. The second is a medium to ...
With the reactor again at full power, flow in the secondary cooling system was stopped. This test caused the temperature to increase, since there was nowhere for the reactor heat to go. As the primary (reactor) cooling system became hotter, the fuel, sodium coolant, and structure expanded, and the reactor shut down.
The integral fast reactor (IFR), originally the advanced liquid-metal reactor (ALMR), is a design for a nuclear reactor using fast neutrons and no neutron moderator (a "fast" reactor). IFRs can breed more fuel and are distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.