enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lattice energy - Wikipedia

    en.wikipedia.org/wiki/Lattice_energy

    The lattice energy of an ionic compound depends strongly upon the charges of the ions that comprise the solid, which must attract or repel one another via Coulomb's Law. More subtly, the relative and absolute sizes of the ions influence Δ H l a t t i c e {\displaystyle \Delta H_{lattice}} .

  3. List of United States energy acts - Wikipedia

    en.wikipedia.org/wiki/List_of_United_States...

    Extended and modified renewable energy tax incentives and defined electricity as a clean fuel. 2009 American Recovery and Reinvestment Act of 2009: Provided funding for an electric smart grid. Created and modified renewable energy tax cuts. Weatherized modest-income homes. Incentivized federal building energy efficiency.

  4. Lattice diffusion coefficient - Wikipedia

    en.wikipedia.org/wiki/Lattice_diffusion_coefficient

    Interstitial Atomic diffusion across a 4-coordinated lattice. Note that the atoms often block each other from moving to adjacent sites. As per Fick’s law, the net flux (or movement of atoms) is always in the opposite direction of the concentration gradient. H + ions diffusing in an O 2-lattice of superionic ice

  5. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound.In 1918 [1] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.

  6. Kapustinskii equation - Wikipedia

    en.wikipedia.org/wiki/Kapustinskii_equation

    The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.

  7. Laue equations - Wikipedia

    en.wikipedia.org/wiki/Laue_equations

    Each is by definition the wavevector of a plane wave in the Fourier series of a spatial function which periodicity follows the crystal lattice (e.g., the function representing the electronic density of the crystal), wavefronts of each plane wave in the Fourier series is perpendicular to the plane wave's wavevector , and these wavefronts are ...

  8. Reciprocal lattice - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_lattice

    Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...

  9. Born–Mayer equation - Wikipedia

    en.wikipedia.org/wiki/Born–Mayer_equation

    The Born–Mayer equation is an equation that is used to calculate the lattice energy of a crystalline ionic compound.It is a refinement of the Born–Landé equation by using an improved repulsion term.