enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...

  3. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    UC Merced Land Use Dataset These images were manually extracted from large images from the USGS National Map Urban Area Imagery collection for various urban areas around the US. This is a 21 class land use image dataset meant for research purposes. There are 100 images for each class. 2,100 Image chips of 256x256, 30 cm (1 foot) GSD

  4. Data preparation - Wikipedia

    en.wikipedia.org/wiki/Data_preparation

    Given the variety of data sources (e.g. databases, business applications) that provide data and formats that data can arrive in, data preparation can be quite involved and complex. There are many tools and technologies [5] that are used for data preparation. The cost of cleaning the data should always be balanced against the value of the ...

  5. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Covertype Dataset Data for predicting forest cover type strictly from cartographic variables. Many geographical features given. 581,012 Text Classification 1998 [310] [311] J. Blackard et al. Abscisic Acid Signaling Network Dataset Data for a plant signaling network. Goal is to determine set of rules that governs the network. None. 300 Text

  6. Automated machine learning - Wikipedia

    en.wikipedia.org/wiki/Automated_machine_learning

    To make the data amenable for machine learning, an expert may have to apply appropriate data pre-processing, feature engineering, feature extraction, and feature selection methods. After these steps, practitioners must then perform algorithm selection and hyperparameter optimization to maximize the predictive performance of their model.

  7. CIFAR-10 - Wikipedia

    en.wikipedia.org/wiki/CIFAR-10

    The CIFAR-10 dataset (Canadian Institute For Advanced Research) is a collection of images that are commonly used to train machine learning and computer vision algorithms. It is one of the most widely used datasets for machine learning research. [1] [2] The CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes. [3]

  8. MNIST database - Wikipedia

    en.wikipedia.org/wiki/MNIST_database

    The set of images in the MNIST database was created in 1994. Previously, NIST released two datasets: Special Database 1 (NIST Test Data I, or SD-1); and Special Database 3 (or SD-2). They were released on two CD-ROMs. SD-1 was the test set, and it contained digits written by high school students, 58,646 images written by 500 different writers.

  9. Preprocessor - Wikipedia

    en.wikipedia.org/wiki/Preprocessor

    A common example from computer programming is the processing performed on source code before the next step of compilation. In some computer languages (e.g., C and PL/I) there is a phase of translation known as preprocessing. It can also include macro processing, file inclusion and language extensions.