Search results
Results from the WOW.Com Content Network
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
Craig's theorem (mathematical logic) Craig's interpolation theorem (mathematical logic) Cramér’s decomposition theorem ; Cramér's theorem (large deviations) (probability) Cramer's theorem (algebraic curves) (analytic geometry) Cramér–Wold theorem (measure theory) Critical line theorem (number theory) Crooks fluctuation theorem
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power.
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, after which an element ϕ ∈ T {\displaystyle \phi \in T} of a deductively closed theory T {\displaystyle T} is then called a theorem of the theory.
A fundamental structure in mathematics and logic that consists of two elements arranged in a specific order, typically represented as (a, b). ostensive definition A definition that explains the meaning of a term or symbol by pointing to examples and counterexamples of the concept it represents.
First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables.
The definition of a formal proof is intended to capture the concept of proofs as written in the practice of mathematics. The soundness of this definition amounts to the belief that a published proof can, in principle, be converted into a formal proof. However, outside the field of automated proof assistants, this is rarely done in practice.
Computational logic is the branch of logic and computer science that studies how to implement mathematical reasoning and logical formalisms using computers. This includes, for example, automatic theorem provers , which employ rules of inference to construct a proof step by step from a set of premises to the intended conclusion without human ...