Search results
Results from the WOW.Com Content Network
Two-sample t-tests for a difference in means involve independent samples (unpaired samples) or paired samples. Paired t-tests are a form of blocking, and have greater power (probability of avoiding a type II error, also known as a false negative) than unpaired tests when the paired units are similar with respect to "noise factors" (see ...
A paired difference test is designed for situations where there is dependence between pairs of measurements (in which case a test designed for comparing two independent samples would not be appropriate). That applies in a within-subjects study design, i.e., in a study where the same set of subjects undergo both of the conditions being compared.
The main statistical tests available are Independent and Paired t-tests, Wilcoxon signed ranks, Mann–Whitney U, Pearson's chi squared, Kruskal Wallis H, one-way ANOVA, Spearman's R, and Pearson's R. Nested tables can be produced with row and column percentages, totals, standard deviation, mean, median, lower and upper quartiles, and sum.
Unpaired samples are also called independent samples. Paired samples are also called dependent. Finally, there are some statistical tests that perform analysis of relationship between multiple variables like regression. [1] Number of samples: The number of samples of data. Exactness: A test can be exact or be asymptotic delivering approximate ...
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
The test is named after Frank Wilcoxon (1892–1965) who, in a single paper, proposed both it and the rank-sum test for two independent samples. [3] The test was popularized by Sidney Siegel (1956) in his influential textbook on non-parametric statistics. [4] Siegel used the symbol T for the test statistic, and consequently, the test is ...
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
A number of statistics can be shown to have t distributions for samples of moderate size under null hypotheses that are of interest, so that the t distribution forms the basis for significance tests. For example, the distribution of Spearman's rank correlation coefficient ρ, in the null case (zero correlation) is well approximated by the t ...