enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    A spacetime diagram is a graphical illustration of locations in space at various times, especially in the special theory of relativity.Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations.

  3. Mathematical morphology - Wikipedia

    en.wikipedia.org/wiki/Mathematical_morphology

    The dilation is commutative, also given by = =. If B has a center on the origin, as before, then the dilation of A by B can be understood as the locus of the points covered by B when the center of B moves inside A. In the above example, the dilation of the square of side 10 by the disk of radius 2 is a square of side 14, with rounded corners ...

  4. Dilation (morphology) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(morphology)

    Dilation is commutative, also given by = =. If B has a center on the origin, then the dilation of A by B can be understood as the locus of the points covered by B when the center of B moves inside A. The dilation of a square of size 10, centered at the origin, by a disk of radius 2, also centered at the origin, is a square of side 14, with ...

  5. Opening (morphology) - Wikipedia

    en.wikipedia.org/wiki/Opening_(morphology)

    The opening of the dark-blue square by a disk, resulting in the light-blue square with round corners. In mathematical morphology, opening is the dilation of the erosion of a set A by a structuring element B:

  6. Dilation (metric space) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(metric_space)

    In Euclidean space, such a dilation is a similarity of the space. [2] Dilations change the size but not the shape of an object or figure. Every dilation of a Euclidean space that is not a congruence has a unique fixed point [3] that is called the center of dilation. [4] Some congruences have fixed points and others do not. [5]

  7. Naimark's dilation theorem - Wikipedia

    en.wikipedia.org/wiki/Naimark's_dilation_theorem

    We now sketch the proof. The argument passes E to the induced map Φ E {\displaystyle \Phi _{E}} and uses Stinespring's dilation theorem . Since E is positive, so is Φ E {\displaystyle \Phi _{E}} as a map between C*-algebras, as explained above.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Erosion (morphology) - Wikipedia

    en.wikipedia.org/wiki/Erosion_(morphology)

    Erosion (usually represented by ⊖) is one of two fundamental operations (the other being dilation) in morphological image processing from which all other morphological operations are based. It was originally defined for binary images , later being extended to grayscale images, and subsequently to complete lattices .