Search results
Results from the WOW.Com Content Network
A free variable is a notation (symbol) that specifies places in an expression where substitution may take place and is not a parameter of this or any container expression. The idea is related to a placeholder (a symbol that will later be replaced by some value), or a wildcard character that stands for an unspecified symbol. In computer ...
Again, each endogenous variable depends on potentially each exogenous variable. Without restrictions on the A and B, the coefficients of A and B cannot be identified from data on y and z: each row of the structural model is just a linear relation between y and z with unknown coefficients. (This is again the parameter identification problem.)
Any variable can be classified as being either a free variable or a bound variable. For a given combination of values for the free variables, an expression may be evaluated, although for some combinations of values of the free variables, the value of the expression may be undefined. Thus an expression represents an operation over constants and ...
In mathematical logic, algebraic logic is the reasoning obtained by manipulating equations with free variables.. What is now usually called classical algebraic logic focuses on the identification and algebraic description of models appropriate for the study of various logics (in the form of classes of algebras that constitute the algebraic semantics for these deductive systems) and connected ...
The formal parameter variable is said to bind the variable name wherever it occurs free in the body. Variable (names) that have already been matched to formal parameter variable are said to be bound. All other variables in the expression are called free. For example, in the following expression y is a bound variable and x is free: . . Also note ...
All other variables are called free. For example, in the expression λy.x x y, y is a bound variable and x is a free variable. Also a variable is bound by its nearest abstraction. In the following example the single occurrence of x in the expression is bound by the second lambda: λx.y (λx.z x).
The substitution rule states that for any φ and any term t, one can conclude φ[t/x] from φ provided that no free variable of t becomes bound during the substitution process. (If some free variable of t becomes bound, then to substitute t for x it is first necessary to change the bound variables of φ to differ from the free variables of t.)
A variable is considered dependent if it depends on an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of ...