enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    In-context learning, refers to a model's ability to temporarily learn from prompts.For example, a prompt may include a few examples for a model to learn from, such as asking the model to complete "maison → house, chat → cat, chien →" (the expected response being dog), [23] an approach called few-shot learning.

  3. Few-shot learning - Wikipedia

    en.wikipedia.org/wiki/Few-shot_learning

    Few-shot learning and one-shot learning may refer to: Few-shot learning, a form of prompt engineering in generative AI; One-shot learning (computer vision)

  4. List of large language models - Wikipedia

    en.wikipedia.org/wiki/List_of_large_language_models

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text. This page lists notable large language models.

  5. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation.LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.

  6. Language model - Wikipedia

    en.wikipedia.org/wiki/Language_model

    A language model is a probabilistic model of a natural language. [1] In 1980, the first significant statistical language model was proposed, and during the decade IBM performed ‘Shannon-style’ experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.

  7. Curriculum learning - Wikipedia

    en.wikipedia.org/wiki/Curriculum_learning

    Curriculum learning is a technique in machine learning in which a model is trained on examples of increasing difficulty, where the definition of "difficulty" may be ...

  8. Outline of natural language processing - Wikipedia

    en.wikipedia.org/wiki/Outline_of_natural...

    Machine learning – subfield of computer science that examines pattern recognition and computational learning theory in artificial intelligence. There are three broad approaches to machine learning. Supervised learning occurs when the machine is given example inputs and outputs by a teacher so that it can learn a rule that maps inputs to outputs.

  9. Template:Natural language processing - Wikipedia

    en.wikipedia.org/wiki/Template:Natural_Language...

    Template documentation This template's initial visibility currently defaults to autocollapse , meaning that if there is another collapsible item on the page (a navbox, sidebar , or table with the collapsible attribute ), it is hidden apart from its title bar; if not, it is fully visible.