enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron radiation - Wikipedia

    en.wikipedia.org/wiki/Neutron_radiation

    Neutron radiation is a form of ionizing radiation that presents as free neutrons.Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides—which, in turn, may trigger further neutron radiation.

  3. Ionizing radiation - Wikipedia

    en.wikipedia.org/wiki/Ionizing_radiation

    Ionizing radiation may be grouped as directly or indirectly ionizing. Any charged particle with mass can ionize atoms directly by fundamental interaction through the Coulomb force if it has enough kinetic energy. Such particles include atomic nuclei, electrons, muons, charged pions, protons, and energetic charged nuclei stripped of their electrons.

  4. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    Free neutrons do not directly ionize atoms, but they do indirectly cause ionizing radiation, so they can be a biological hazard, depending on dose. A small natural "neutron background" flux of free neutrons exists on Earth, caused by cosmic ray showers , and by the natural radioactivity of spontaneously fissionable elements in the Earth's crust .

  5. Radiation - Wikipedia

    en.wikipedia.org/wiki/Radiation

    Hence, neutrons are said to be "indirectly ionizing". Even neutrons without significant kinetic energy are indirectly ionizing, and are thus a significant radiation hazard. Not all materials are capable of neutron activation; in water, for example, the most common isotopes of both types atoms present (hydrogen and oxygen) capture neutrons and ...

  6. Neutron activation - Wikipedia

    en.wikipedia.org/wiki/Neutron_activation

    If the fission requires an input of energy, that comes from the kinetic energy of the neutron. An example of this kind of fission in a light element can occur when the stable isotope of lithium, lithium-7, is bombarded with fast neutrons and undergoes the following nuclear reaction: 7 3 Li + 1 0 n → 4 2 He + 3 1 H + 1 0 n + gamma rays ...

  7. Alpha particle - Wikipedia

    en.wikipedia.org/wiki/Alpha_particle

    To do this they collected and purified the gas emitted by radium, a known alpha particle emitter, in a glass tube. An electric spark discharge inside the tube produced light. Subsequent study of the spectra of this light showed that the gas was helium and thus the alpha particles were indeed the helium ions. [9]: 61

  8. Monoisotopic element - Wikipedia

    en.wikipedia.org/wiki/Monoisotopic_element

    Monoisotopic elements are characterized, except in one case, by odd numbers of protons (odd Z), and even numbers of neutrons. Because of the energy gain from nuclear pairing, the odd number of protons imparts instability to isotopes of an odd Z , which in heavier elements requires a completely paired set of neutrons to offset this tendency into ...

  9. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    The energy released in a nuclear reaction can appear mainly in one of three ways: kinetic energy of the product particles (fraction of the kinetic energy of the charged nuclear reaction products can be directly converted into electrostatic energy); [5] emission of very high energy photons, called gamma rays;