Search results
Results from the WOW.Com Content Network
Exponentiation with negative exponents is defined by the following identity, which holds for any integer n and nonzero b: =. [1] Raising 0 to a negative exponent is undefined but, in some circumstances, it may be interpreted as infinity (). [26]
Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...
More generally, e q is irrational for any non-zero rational q. [13] Charles Hermite further proved that e is a transcendental number, in 1873, which means that is not a root of any polynomial with rational coefficients, as is e α for any non-zero algebraic α. [14]
It is called exponential because its argument can be seen as an exponent to which a constant number e ≈ 2.718, the base, is raised. There are several other definitions of the exponential function, which are all equivalent although being of very different nature.
The exponent can be generalized to an arbitrary real number as follows: if > , then (+) + for or ...
A stronger, related result is the five exponentials theorem, [4] which is as follows. Let x 1, x 2 and y 1, y 2 be two pairs of complex numbers, with each pair being linearly independent over the rational numbers, and let γ be a non-zero algebraic number.
It is not known whether n q is rational for any positive integer n and positive non-integer rational q. [20] For example, it is not known whether the positive root of the equation 4 x = 2 is a rational number. [citation needed] It is not known whether e π or π e (defined using Kneser's extension) are rationals or not.
Zermelo–Fraenkel set theory with the axiom of choice guarantees the existence of a basis of this vector space: there exists a set B of real numbers such that every real number can be written uniquely as a finite linear combination of elements of this set, using rational coefficients only, and such that no element of B is a rational linear ...