Search results
Results from the WOW.Com Content Network
Descriptive science is a category of science that involves descriptive research; that is, observing, recording, describing, and classifying phenomena.Descriptive research is sometimes contrasted with hypothesis-driven research, which is focused on testing a particular hypothesis by means of experimentation.
Models of scientific inquiry have two functions: first, to provide a descriptive account of how scientific inquiry is carried out in practice, and second, to provide an explanatory account of why scientific inquiry succeeds as well as it appears to do in arriving at genuine knowledge.
Exploratory research is "the preliminary research to clarify the exact nature of the problem to be solved." It is used to ensure additional research is taken into consideration during an experiment as well as determining research priorities, collecting data and honing in on certain subjects which may be difficult to take note of without exploratory research.
The design of a study defines the study type (descriptive, correlational, semi-experimental, experimental, review, meta-analytic) and sub-type (e.g., descriptive-longitudinal case study), research problem, hypotheses, independent and dependent variables, experimental design, and, if applicable, data collection methods and a statistical analysis ...
It can be exploratory, descriptive, or explanatory; however, explanatory research is the most common. [ citation needed ] Basic research generates new ideas, principles, and theories, which may not be immediately utilized but nonetheless form the basis of progress and development in different fields.
Causal analysis is the field of experimental design and statistical analysis pertaining to establishing cause and effect. [1] [2] Exploratory causal analysis (ECA), also known as data causality or causal discovery [3] is the use of statistical algorithms to infer associations in observed data sets that are potentially causal under strict assumptions.
Use of the phrase "working hypothesis" goes back to at least the 1850s. [7]Charles Sanders Peirce came to hold that an explanatory hypothesis is not only justifiable as a tentative conclusion by its plausibility (by which he meant its naturalness and economy of explanation), [8] but also justifiable as a starting point by the broader promise that the hypothesis holds for research.
The use of a sequence of experiments, where the design of each may depend on the results of previous experiments, including the possible decision to stop experimenting, is within the scope of sequential analysis, a field that was pioneered [12] by Abraham Wald in the context of sequential tests of statistical hypotheses. [13]