Search results
Results from the WOW.Com Content Network
In mathematics, a subset of a given set is closed under an operation of the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the natural numbers are closed under addition, but not under subtraction: 1 − 2 is not a natural number, although both 1 and 2 are.
A theory may be referred to as a deductively closed theory to emphasize it is defined as a deductively closed set. [1] Deductive closure is a special case of the more general mathematical concept of closure — in particular, the deductive closure of is exactly the closure of with respect to the operation of logical consequence
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. [1] [2] In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation.
Closure operators are determined by their closed sets, i.e., by the sets of the form cl(X), since the closure cl(X) of a set X is the smallest closed set containing X. Such families of "closed sets" are sometimes called closure systems or "Moore families". [1] A set together with a closure operator on it is sometimes called a closure space.
The quadratic formula =. is a closed form of the solutions to the general quadratic equation + + =. More generally, in the context of polynomial equations, a closed form of a solution is a solution in radicals; that is, a closed-form expression for which the allowed functions are only n th-roots and field operations (+,,, /).
The definition of a point of closure of a set is closely related to the definition of a limit point of a set.The difference between the two definitions is subtle but important – namely, in the definition of a limit point of a set , every neighbourhood of must contain a point of other than itself, i.e., each neighbourhood of obviously has but it also must have a point of that is not equal to ...
Suppose M is a set and A is the set of all binary relations on M. Taking + to be the union, · to be the composition and * to be the reflexive transitive closure , we obtain a Kleene algebra. Every Boolean algebra with operations ∨ {\displaystyle \lor } and ∧ {\displaystyle \land } turns into a Kleene algebra if we use ∨ {\displaystyle ...
A precise statement of the theorem requires careful consideration of what it means to prescribe the derivative of a function on a closed set. One difficulty, for instance, is that closed subsets of Euclidean space in general lack a differentiable structure. The starting point, then, is an examination of the statement of Taylor's theorem.