Search results
Results from the WOW.Com Content Network
The standard deviation is the square root of the variance. When individual determinations of an age are not of equal significance, it is better to use a weighted mean to obtain an "average" age, as follows: ¯ = = =.
Typically when a mean is calculated it is important to know the variance and standard deviation about that mean. When a weighted mean is used, the variance of the weighted sample is different from the variance of the unweighted sample. The biased weighted sample variance ^ is defined similarly to the normal biased sample variance ^:
For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
The mathematics of the distribution resulted from the authors' desire to make the standard deviation equal to about 1/6 of the range. [ 2 ] [ 3 ] The PERT distribution is widely used in risk analysis [ 4 ] to represent the uncertainty of the value of some quantity where one is relying on subjective estimates, because the three parameters ...
It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]