enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    The most naïve algorithm would be to cycle through all subsets of n numbers and, for every one of them, check if the subset sums to the right number. The running time is of order O ( 2 n ⋅ n ) {\displaystyle O(2^{n}\cdot n)} , since there are 2 n {\displaystyle 2^{n}} subsets and, to check each subset, we need to sum at most n elements.

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  4. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    Sieve of Eratosthenes: algorithm steps for primes below 121 (including optimization of starting from prime's square). In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.

  5. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Rowland (2008) proved that this sequence contains only ones and prime numbers. However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper ...

  6. Sieve of Sundaram - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Sundaram

    The remaining numbers are doubled and incremented by one, giving a list of the odd prime numbers (that is, all primes except 2) below 2n + 2. The sieve of Sundaram sieves out the composite numbers just as the sieve of Eratosthenes does, but even numbers are not considered; the work of "crossing out" the multiples of 2 is done by the final ...

  7. Blum Blum Shub - Wikipedia

    en.wikipedia.org/wiki/Blum_Blum_Shub

    Blum Blum Shub takes the form + =, where M = pq is the product of two large primes p and q.At each step of the algorithm, some output is derived from x n+1; the output is commonly either the bit parity of x n+1 or one or more of the least significant bits of x n+1.

  8. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  9. Euler's criterion - Wikipedia

    en.wikipedia.org/wiki/Euler's_criterion

    We can test prime p's manually given the formula above. In one case, testing p = 3, we have 17 (3 − 1)/2 = 17 1 ≡ 2 ≡ −1 (mod 3), therefore 17 is not a quadratic residue modulo 3. In another case, testing p = 13, we have 17 (13 − 1)/2 = 17 6 ≡ 1 (mod 13), therefore 17 is a quadratic residue modulo 13.