enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Word (group theory) - Wikipedia

    en.wikipedia.org/wiki/Word_(group_theory)

    In group theory, a word is any written product of group elements and their inverses. For example, if x, y and z are elements of a group G, then xy, z −1 xzz and y −1 zxx −1 yz −1 are words in the set {x, y, z}. Two different words may evaluate to the same value in G, [1] or even in every group. [2]

  3. Lattice (group) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(group)

    In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.

  4. Lattice (discrete subgroup) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(discrete_subgroup)

    Let be a locally compact group and a discrete subgroup (this means that there exists a neighbourhood of the identity element of such that = {}).Then is called a lattice in if in addition there exists a Borel measure on the quotient space / which is finite (i.e. (/) < +) and -invariant (meaning that for any and any open subset / the equality () = is satisfied).

  5. List of group theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_group_theory_topics

    In mathematics and abstract algebra, group theory studies the algebraic structures known as groups.The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms.

  6. Glossary of group theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_group_theory

    A simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. subgroup A subgroup of a group G is a subset H of the elements of G that itself forms a group when equipped with the restriction of the group operation of G to H × H .

  7. Modular group - Wikipedia

    en.wikipedia.org/wiki/Modular_group

    The braid group B 3 is the universal central extension of the modular group, with these sitting as lattices inside the (topological) universal covering group SL 2 (R) → PSL 2 (R). Further, the modular group has a trivial center, and thus the modular group is isomorphic to the quotient group of B 3 modulo its center ; equivalently, to the ...

  8. Lattice of subgroups - Wikipedia

    en.wikipedia.org/wiki/Lattice_of_subgroups

    Lattice-theoretic information about the lattice of subgroups can sometimes be used to infer information about the original group, an idea that goes back to the work of Øystein Ore (1937, 1938). For instance, as Ore proved , a group is locally cyclic if and only if its lattice of subgroups is distributive .

  9. Group theory - Wikipedia

    en.wikipedia.org/wiki/Group_theory

    Group theory has three main historical sources: number theory, the theory of algebraic equations, and geometry.The number-theoretic strand was begun by Leonhard Euler, and developed by Gauss's work on modular arithmetic and additive and multiplicative groups related to quadratic fields.