enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dedekind-infinite set - Wikipedia

    en.wikipedia.org/wiki/Dedekind-infinite_set

    A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers. [1] A simple example is , the set of natural numbers.

  3. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    The Dedekind–MacNeille completion of S has the same order dimension as does S itself. [19] In the category of partially ordered sets and monotonic functions between partially ordered sets, the complete lattices form the injective objects for order-embeddings, and the Dedekind–MacNeille completion of S is the injective hull of S. [20]

  4. Artin L-function - Wikipedia

    en.wikipedia.org/wiki/Artin_L-function

    One application is to give factorisations of Dedekind zeta-functions, for example in the case of a number field that is Galois over the rational numbers. In accordance with the decomposition of the regular representation into irreducible representations , such a zeta-function splits into a product of Artin L -functions, for each irreducible ...

  5. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    The least-upper-bound property is one form of the completeness axiom for the real numbers, and is sometimes referred to as Dedekind completeness. [2] It can be used to prove many of the fundamental results of real analysis , such as the intermediate value theorem , the Bolzano–Weierstrass theorem , the extreme value theorem , and the Heine ...

  6. Finite set - Wikipedia

    en.wikipedia.org/wiki/Finite_set

    is a finite set. (Richard Dedekind) Every one-to-one function from into itself is onto. A set with this property is called Dedekind-finite. Every surjective function from onto itself is one-to-one. is empty or every partial ordering of contains a maximal element.

  7. Algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number_field

    For this converse the field discriminant is needed. This is the Dedekind discriminant theorem. In the example above, the discriminant of the number field () with x 3 − x − 1 = 0 is −23, and as we have seen the 23-adic place ramifies. The Dedekind discriminant tells us it is the only ultrametric place that does.

  8. Dedekind domain - Wikipedia

    en.wikipedia.org/wiki/Dedekind_domain

    A Dedekind domain can also be characterized in terms of homological algebra: an integral domain is a Dedekind domain if and only if it is a hereditary ring; that is, every submodule of a projective module over it is projective. Similarly, an integral domain is a Dedekind domain if and only if every divisible module over it is injective. [3]

  9. Projective line over a ring - Wikipedia

    en.wikipedia.org/wiki/Projective_line_over_a_ring

    The Dedekind-finite property is characterized. Most significantly, representation of P 1 (R) in a projective space over a division ring K is accomplished with a (K, R)-bimodule U that is a left K-vector space and a right R-module. The points of P 1 (R) are subspaces of P 1 (K, U × U) isomorphic to their complements.