enow.com Web Search

  1. Ad

    related to: dedekind finite examples of linear algebra

Search results

  1. Results from the WOW.Com Content Network
  2. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    When S is finite, its completion is also finite, and has the smallest number of elements among all finite complete lattices containing S. [ 12 ] The partially ordered set S is join-dense and meet-dense in the Dedekind–MacNeille completion; that is, every element of the completion is a join of some set of elements of S , and is also the meet ...

  3. Dedekind domain - Wikipedia

    en.wikipedia.org/wiki/Dedekind_domain

    A Dedekind domain can also be characterized in terms of homological algebra: an integral domain is a Dedekind domain if and only if it is a hereditary ring; that is, every submodule of a projective module over it is projective. Similarly, an integral domain is a Dedekind domain if and only if every divisible module over it is injective. [3]

  4. Principal ideal domain - Wikipedia

    en.wikipedia.org/wiki/Principal_ideal_domain

    A is a Dedekind domain that is a UFD. Every finitely generated ideal of A is principal (i.e., A is a Bézout domain) and A satisfies the ascending chain condition on principal ideals. A admits a Dedekind–Hasse norm. [14] Any Euclidean norm is a Dedekind-Hasse norm; thus, (5) shows that a Euclidean domain is a PID. (4) compares to:

  5. Dedekind-infinite set - Wikipedia

    en.wikipedia.org/wiki/Dedekind-infinite_set

    A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers. [1] A simple example is , the set of natural numbers.

  6. Finite set - Wikipedia

    en.wikipedia.org/wiki/Finite_set

    Using the standard ZFC axioms for set theory, every Dedekind-finite set is also finite, but this implication cannot be proved in ZF (Zermelo–Fraenkel axioms without the axiom of choice) alone. The axiom of countable choice , a weak version of the axiom of choice, is sufficient to prove this equivalence.

  7. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    Linear algebra is the branch of mathematics concerning linear equations such as ... A finite set of linear equations in a finite set of variables, for example, x 1, x ...

  8. Finitely generated module - Wikipedia

    en.wikipedia.org/wiki/Finitely_generated_module

    Because the ring product may be used to combine elements, more than just R-linear combinations of elements of G are generated. For example, a polynomial ring R[x] is finitely generated by {1, x} as a ring, but not as a module. If A is a commutative algebra (with unity) over R, then the following two statements are equivalent: [5]

  9. Completeness (order theory) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(order_theory)

    The best-known example is the existence of all suprema, which is in fact equivalent to the existence of all infima. Indeed, for any subset X of a poset, one can consider its set of lower bounds B . The supremum of B is then equal to the infimum of X : since each element of X is an upper bound of B , sup B is smaller than all elements of X , i.e ...

  1. Ad

    related to: dedekind finite examples of linear algebra