Search results
Results from the WOW.Com Content Network
The length of an interval of consecutive integers with property that every element has a factor in common with one of the endpoints. A059756: Sierpinski numbers: 78557, 271129, 271577, 322523, 327739, 482719, 575041, 603713, 903983, 934909, ... Odd k for which { k⋅2 n + 1 : n ∈ } consists only of composite numbers. A076336
14, 49, −21 and 0 are multiples of 7, whereas 3 and −6 are not. This is because there are integers that 7 may be multiplied by to reach the values of 14, 49, 0 and −21, while there are no such integers for 3 and −6.
105 is the 14th triangular number, [1] a dodecagonal number, [2] and the first Zeisel number. [3] It is the first odd sphenic number and is the product of three consecutive prime numbers. 105 is the double factorial of 7. [4] It is also the sum of the first five square pyramidal numbers. 105 comes in the middle of the prime quadruplet (101, 103 ...
This last expression is defined much more broadly than the original. In the same way that z! is not defined for negative integers, and z‼ is not defined for negative even integers, z! (α) is not defined for negative multiples of α. However, it is defined and satisfies (z+α)! (α) = (z+α)·z! (α) for all other complex numbers z.
Let [a, b, c] be a primitive triple with a odd. Then 3 new triples [a 1, b 1, c 1], [a 2, b 2, c 2], [a 3, b 3, c 3] may be produced from [a, b, c] using matrix multiplication and Berggren's [11] three matrices A, B, C. Triple [a, b, c] is termed the parent of the three new triples (the children). Each child is itself the parent of 3 more ...
Otherwise μ(n) is 1 if Ω(n) is even, and is −1 if Ω(n) is odd. A sphenic number has Ω(n) = 3 and is square-free (so it is the product of 3 distinct primes). The first: 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154 (sequence A007304 in the OEIS). a 0 (n) is the sum of primes dividing n, counted with multiplicity. It is an additive ...
Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even—as the last digit of any even number is 0, 2, 4, 6, or 8.
y = x 3 for values of 1 ≤ x ≤ 25.. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number n is denoted n 3, using a superscript 3, [a] for example 2 3 = 8.