Search results
Results from the WOW.Com Content Network
The Hough transform was patented as U.S. patent 3,069,654 in 1962 and assigned to the U.S. Atomic Energy Commission with the name "Method and Means for Recognizing Complex Patterns". This patent uses a slope-intercept parametrization for straight lines, which awkwardly leads to an unbounded transform space, since the slope can go to infinity.
As many edge detection methods rely on the computation of image gradients, they also differ in the types of filters used for computing gradient estimates in the x- and y-directions. A survey of a number of different edge detection methods can be found in (Ziou and Tabbone 1998); [ 6 ] see also the encyclopedia articles on edge detection in ...
The circle Hough Transform (CHT) is a basic feature extraction technique used in digital image processing for detecting circles in imperfect images. The circle candidates are produced by “voting” in the Hough parameter space and then selecting local maxima in an accumulator matrix .
The Hough transform [3] can be used to detect lines and the output is a parametric description of the lines in an image, for example ρ = r cos(θ) + c sin(θ). [1] If there is a line in a row and column based image space, it can be defined ρ, the distance from the origin to the line along a perpendicular to the line, and θ, the angle of the perpendicular projection from the origin to the ...
The generalized Hough transform (GHT), introduced by Dana H. Ballard in 1981, is the modification of the Hough transform using the principle of template matching. [1] The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.). In these cases, we have knowledge of the shape and aim to ...
Sobel and Feldman presented the idea of an "Isotropic 3 × 3 Image Gradient Operator" at a talk at SAIL in 1968. [1] Technically, it is a discrete differentiation operator , computing an approximation of the gradient of the image intensity function.
Numerous methods exist to compute descent directions, all with differing merits, such as gradient descent or the conjugate gradient method. More generally, if P {\displaystyle P} is a positive definite matrix, then p k = − P ∇ f ( x k ) {\displaystyle p_{k}=-P\nabla f(x_{k})} is a descent direction at x k {\displaystyle x_{k}} . [ 1 ]
Any user implemented and/or from a set of predefined. Explicit methods: forward Euler, 3rd and 4th order Runge-Kutta. Implicit methods: backward Euler, implicit Midpoint, Crank-Nicolson, SDIRK. Embedded explicit methods: Heun-Euler, Bogacki-Shampine, Dopri, Fehlberg, Cash-Karp.