Search results
Results from the WOW.Com Content Network
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or :, with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.
A golden rectangle with long side a + b and short side a can be divided into two pieces: a similar golden rectangle (shaded red, right) with long side a and short side b and a square (shaded blue, left) with sides of length a. This illustrates the relationship a + b / a = a / b = φ.
A supergolden rectangle is a rectangle whose side lengths are in a : ratio. Compared to the golden rectangle , the supergolden rectangle has one more degree of self-similarity . Given a rectangle of height 1 , length ψ {\displaystyle \psi } and diagonal length ψ 3 {\displaystyle {\sqrt {\psi ^{3}}}} (according to 1 + ψ 2 = ψ ...
The root-3 rectangle is also called sixton, [6] and its short and longer sides are proportionally equivalent to the side and diameter of a hexagon. [7] Since 2 is the square root of 4, the root-4 rectangle has a proportion 1:2, which means that it is equivalent to two squares side-by-side. [7] The root-5 rectangle is related to the golden ratio ...
Set square shaped as 45° - 45° - 90° triangle The side lengths of a 45° - 45° - 90° triangle 45° - 45° - 90° right triangle of hypotenuse length 1.. In plane geometry, dividing a square along its diagonal results in two isosceles right triangles, each with one right angle (90°, π / 2 radians) and two other congruent angles each measuring half of a right angle (45°, or ...
Construction of a golden rectangle Construct a simple square; Draw a line from the midpoint of one side of the square to an opposite corner; Use that line as the radius to draw an arc that defines the height of the rectangle; Use the endpoints of the arc to complete the rectangle; The proportions of the resulting rectangle is φ or
Tschichold says that common ratios for page proportion used in book design include as 2:3, 1: √ 3, and the golden ratio. The image with circular arcs depicts the proportions in a medieval manuscript, that according to Tschichold feature a "Page proportion 2:3. Margin proportions 1:1:2:3. Type area in accord with the Golden Section.
Consider a rectangle such that the ratio of its length L to its width W is the n th metallic ratio. If one remove from this rectangle n squares of side length W, one gets a rectangle similar to the original rectangle; that is, a rectangle with the same ratio of the length to the width (see figures).