Search results
Results from the WOW.Com Content Network
Pitot's theorem states that, for these quadrilaterals, the two sums of lengths of opposite sides are the same. Both sums of lengths equal the semiperimeter of the quadrilateral. [2] The converse implication is also true: whenever a convex quadrilateral has pairs of opposite sides with the same sums of lengths, it has an inscribed circle ...
Theorems about quadrilaterals and circles (6 P) Pages in category "Theorems about quadrilaterals" The following 11 pages are in this category, out of 11 total.
Newton's theorem can easily be derived from Anne's theorem considering that in tangential quadrilaterals the combined lengths of opposite sides are equal (Pitot theorem: a + c = b + d). According to Anne's theorem, showing that the combined areas of opposite triangles PAD and PBC and the combined areas of triangles PAB and PCD are equal is ...
Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .
An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...
Download as PDF; Printable version; In other projects ... Theorems about quadrilaterals (1 C, 11 P) ... Pages in category "Quadrilaterals" The following 9 pages are ...
Newton's theorem (quadrilateral) Nicomachus's theorem (number theory) Nielsen fixed-point theorem (fixed points) Nielsen–Ninomiya theorem (quantum field theory) Nielsen realization problem (geometric topology) Nielsen–Schreier theorem (free groups) Niven's theorem (number theory) No-broadcasting theorem (quantum information theory)
A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula. If the semiperimeter is not used, Brahmagupta's formula is