enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Furstenberg's proof of the infinitude of primes - Wikipedia

    en.wikipedia.org/wiki/Furstenberg's_proof_of_the...

    In mathematics, particularly in number theory, Hillel Furstenberg's proof of the infinitude of primes is a topological proof that the integers contain infinitely many prime numbers. When examined closely, the proof is less a statement about topology than a statement about certain properties of arithmetic sequences.

  3. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Euclid offered a proof published in his work Elements (Book IX, Proposition 20), [1] which is paraphrased here. [2] Consider any finite list of prime numbers p 1, p 2, ..., p n. It will be shown that there exists at least one additional prime number not included in this list. Let P be the product of all the prime numbers in the list: P = p 1 p ...

  4. Arithmetic progression topologies - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression...

    Both the Furstenberg and Golomb topologies furnish a proof that there are infinitely many prime numbers. [1] [2] A sketch of the proof runs as follows: Fix a prime p and note that the (positive, in the Golomb space case) integers are a union of finitely many residue classes modulo p. Each residue class is an arithmetic progression, and thus clopen.

  5. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    Many more proofs of the infinitude of primes are known, including an analytical proof by Euler, Goldbach's proof based on Fermat numbers, [52] Furstenberg's proof using general topology, [53] and Kummer's elegant proof. [54] Euclid's proof [55] shows that every finite list of primes is incomplete.

  6. Euclid number - Wikipedia

    en.wikipedia.org/wiki/Euclid_number

    Not all Euclid numbers are prime. E 6 = 13# + 1 = 30031 = 59 × 509 is the first composite Euclid number.. Every Euclid number is congruent to 3 modulo 4 since the primorial of which it is composed is twice the product of only odd primes and thus congruent to 2 modulo 4.

  7. Primorial prime - Wikipedia

    en.wikipedia.org/wiki/Primorial_prime

    As of December 2024, the largest known prime of the form p n # + 1 is 7351117# + 1 (n = 498,865) with 3,191,401 digits, also found by the PrimeGrid project. Euclid's proof of the infinitude of the prime numbers is commonly misinterpreted as defining the primorial primes, in the following manner: [2]

  8. Safe and Sophie Germain primes - Wikipedia

    en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes

    If 2p + 1 is a safe prime, the multiplicative group of integers modulo 2p + 1 has a subgroup of large prime order. It is usually this prime-order subgroup that is desirable, and the reason for using safe primes is so that the modulus is as small as possible relative to p. A prime number p = 2q + 1 is called a safe prime if q is prime.

  9. Euclid–Euler theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid–Euler_theorem

    A Mersenne prime is a prime number of the form M p = 2 p − 1, one less than a power of two. For a number of this form to be prime, p itself must also be prime, but not all primes give rise to Mersenne primes in this way. For instance, 2 3 − 1 = 7 is a Mersenne prime, but 2 11 − 1 = 2047 = 23 × 89 is not.