Search results
Results from the WOW.Com Content Network
Geometry in computer vision is a sub-field within computer vision dealing with geometric relations between the 3D world and its projection into 2D image, typically by means of a pinhole camera. Common problems in this field relate to Reconstruction of geometric structures (for example, points or lines) in the 3D world based on measurements in ...
In mathematical complex analysis, a quasiconformal mapping, introduced by Grötzsch (1928) and named by Ahlfors (1935), is a (weakly differentiable) homeomorphism between plane domains which to first order takes small circles to small ellipses of bounded eccentricity.
Geometric feature learning is a technique combining machine learning and computer vision to solve visual tasks. The main goal of this method is to find a set of representative features of geometric form to represent an object by collecting geometric features from images and learning them using efficient machine learning methods.
If the images to be rectified are taken from camera pairs without geometric distortion, this calculation can easily be made with a linear transformation.X & Y rotation puts the images on the same plane, scaling makes the image frames be the same size and Z rotation & skew adjustments make the image pixel rows directly line up [citation needed].
In computer vision, the fundamental matrix is a 3×3 matrix which relates corresponding points in stereo images.In epipolar geometry, with homogeneous image coordinates, x and x′, of corresponding points in a stereo image pair, Fx describes a line (an epipolar line) on which the corresponding point x′ on the other image must lie.
In computer vision, triangulation refers to the process of determining a point in 3D space given its projections onto two, or more, images. In order to solve this problem it is necessary to know the parameters of the camera projection function from 3D to 2D for the cameras involved, in the simplest case represented by the camera matrices .
Efficient PnP (EPnP) is a method developed by Lepetit, et al. in their 2008 International Journal of Computer Vision paper [9] that solves the general problem of PnP for n ≥ 4. This method is based on the notion that each of the n points (which are called reference points) can be expressed as a weighted sum of four virtual control points ...
Poses are often stored internally as transformation matrices. [2] [3] The term “pose” is largely synonymous with the term “transform”, but a transform may often include scale, whereas pose does not. [4] [5] In computer vision, the pose of an object is often estimated from camera input by the process of pose estimation. This information ...