Search results
Results from the WOW.Com Content Network
In inorganic chemistry, mineral hydration is a reaction which adds water to the crystal structure of a mineral, usually creating a new mineral, commonly called a hydrate. In geological terms, the process of mineral hydration is known as retrograde alteration and is a process occurring in retrograde metamorphism .
Water-reactive substances [1] are those that spontaneously undergo a chemical reaction with water, often noted as generating flammable gas. [2] Some are highly reducing in nature. [ 3 ] Notable examples include alkali metals , lithium through caesium , and alkaline earth metals , magnesium through barium .
Hydromagnesite thermally decomposes in three stages releasing water and carbon dioxide. [5] [6] The first stage starting at about 220 °C, is the release of the four molecules of water of crystallisation. This is followed at about 330 °C by the decomposition of the hydroxide ion to a further molecule of water.
In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions . [ 1 ]
Gypsum is deposited from lake and sea water, as well as in hot springs, from volcanic vapors, and sulfate solutions in veins. Hydrothermal anhydrite in veins is commonly hydrated to gypsum by groundwater in near-surface exposures. It is often associated with the minerals halite and sulfur. Gypsum is the most common sulfate mineral. [17]
Cl 2 + H 2 → 2 HCl. As the reaction is exothermic, the installation is called an HCl oven or HCl burner. The resulting hydrogen chloride gas is absorbed in deionized water, resulting in chemically pure hydrochloric acid. This reaction can give a very pure product, e.g. for use in the food industry. The reaction can also be triggered by blue ...
Another example is chloral hydrate, CCl 3 −CH(OH) 2, which can be formed by reaction of water with chloral, CCl 3 −CH=O. Many organic molecules, as well as inorganic molecules, form crystals that incorporate water into the crystalline structure without chemical alteration of the organic molecule (water of crystallization).
Commonly used mineral acids are sulfuric acid (H 2 SO 4), hydrochloric acid (HCl) and nitric acid (HNO 3); these are also known as bench acids. [1] Mineral acids range from superacids (such as perchloric acid) to very weak ones (such as boric acid). Mineral acids tend to be very soluble in water and insoluble in organic solvents.