Search results
Results from the WOW.Com Content Network
PyTorch Lightning is an open-source Python library that provides a high-level interface for PyTorch, a popular deep learning framework. [1] It is a lightweight and high-performance framework that organizes PyTorch code to decouple research from engineering, thus making deep learning experiments easier to read and reproduce.
In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Co-training is a machine learning algorithm used when there are only small amounts of labeled data and large amounts of unlabeled data. One of its uses is in text mining for search engines . It was introduced by Avrim Blum and Tom Mitchell in 1998.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Explanation-based learning (EBL) is a form of machine learning that exploits a very strong, or even perfect, domain theory (i.e. a formal theory of an application domain akin to a domain model in ontology engineering, not to be confused with Scott's domain theory) in order to make generalizations or form concepts from training examples. [1]
AOL latest headlines, entertainment, sports, articles for business, health and world news.
Sample efficiency indicates whether the algorithms need more or less data to train a good policy. PPO achieved sample efficiency because of its use of surrogate objectives. The surrogate objective allows PPO to avoid the new policy moving too far from the old policy; the clip function regularizes the policy update and reuses training data ...