Search results
Results from the WOW.Com Content Network
Caesium-137 (137 55 Cs), cesium-137 (US), [7] or radiocaesium, is a radioactive isotope of caesium that is formed as one of the more common fission products by the nuclear fission of uranium-235 and other fissionable isotopes in nuclear reactors and nuclear weapons. Trace quantities also originate from spontaneous fission of uranium-238. It is ...
Decay Scheme of Caesium-137. Based on a public domain image by Kieran Maher (see original image) Date: 31 August 2006: Source: Own work: Author: Dirk Hünniger: Other versions: Derivative works of this file: Caesium-137 Decay Scheme-de-2.svg
In this latter table, where a decay has been predicted theoretically but never observed experimentally (either directly or through finding an excess of the daughter), the theoretical decay mode is given in parentheses and have "> number" in the half-life column to show the lower limit for the half-life based on experimental observation. Such ...
Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.
As caesium 133, 135, and 137 are formed by the beta particle decay of the corresponding xenon isotopes, this causes the caesium to become physically separated from the bulk of the uranium oxide fuel. Because 135 Xe is a potent nuclear poison with the largest cross section for thermal neutron absorption, the buildup of 135 Xe in the fuel inside ...
Date/Time Thumbnail Dimensions User Comment; current: 13:42, 28 August 2011: 624 × 345 (14 KB): Kalin.KOZHUHAROV: added color and made consistent use of styles: 10:22, 26 March 2011
It is also not produced by nuclear weapons because 135 Cs is created by beta decay of original fission products only long after the nuclear explosion is over. 136 Cs also captures neutrons with a cross section of 13.00 barns, becoming medium-lived radioactive 137 Cs. Caesium-136 undergoes beta decay (β−), producing 136 Ba directly.
The accompanying decay scheme diagram shows the beta decay of caesium-137. 137 Cs is noted for a characteristic gamma peak at 661 keV, but this is actually emitted by the daughter radionuclide 137m Ba. The diagram shows the type and energy of the emitted radiation, its relative abundance, and the daughter nuclides after decay.