enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confusion matrix - Wikipedia

    en.wikipedia.org/wiki/Confusion_matrix

    Confusion matrix is not limited to binary classification and can be used in multi-class classifiers as well. The confusion matrices discussed above have only two conditions: positive and negative. For example, the table below summarizes communication of a whistled language between two speakers, with zero values omitted for clarity. [20]

  3. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    These can be arranged into a 2×2 contingency table (confusion matrix), conventionally with the test result on the vertical axis and the actual condition on the horizontal axis. These numbers can then be totaled, yielding both a grand total and marginal totals. Totaling the entire table, the number of true positives, false negatives, true ...

  4. Phi coefficient - Wikipedia

    en.wikipedia.org/wiki/Phi_coefficient

    Note that the F1 score depends on which class is defined as the positive class. In the first example above, the F1 score is high because the majority class is defined as the positive class. Inverting the positive and negative classes results in the following confusion matrix: TP = 0, FP = 0; TN = 5, FN = 95. This gives an F1 score = 0%.

  5. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    The resulting number gives an estimate on how many positive examples the feature could correctly identify within the data, with higher numbers meaning that the feature could correctly classify more positive samples. Below is an example of how to use the metric when the full confusion matrix of a certain feature is given: Feature A Confusion Matrix

  6. Receiver operating characteristic - Wikipedia

    en.wikipedia.org/wiki/Receiver_operating...

    The result of method A clearly shows the best predictive power among A, B, and C. The result of B lies on the random guess line (the diagonal line), and it can be seen in the table that the accuracy of B is 50%. However, when C is mirrored across the center point (0.5,0.5), the resulting method C′ is even better than A.

  7. Binary classification - Wikipedia

    en.wikipedia.org/wiki/Binary_classification

    Binary classification may be a form of dichotomization in which a continuous function is transformed into a binary variable. Tests whose results are of continuous values, such as most blood values , can artificially be made binary by defining a cutoff value , with test results being designated as positive or negative depending on whether the ...

  8. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  9. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    At the other extreme, if is a deterministic function of and is a deterministic function of then all information conveyed by is shared with : knowing determines the value of and vice versa. As a result, the mutual information is the same as the uncertainty contained in Y {\displaystyle Y} (or X {\displaystyle X} ) alone, namely the entropy of Y ...