Search results
Results from the WOW.Com Content Network
[9] [10] [11] This convention is followed by many computer algebra systems. [12] Nonetheless, some authors leave gcd(0, 0) undefined. [13] The GCD of a and b is their greatest positive common divisor in the preorder relation of divisibility. This means that the common divisors of a and b are exactly the divisors of their GCD.
On the right Nicomachus's example with numbers 49 and 21 resulting in their GCD of 7 (derived from Heath 1908:300). In mathematics , the Euclidean algorithm , [ note 1 ] or Euclid's algorithm , is an efficient method for computing the greatest common divisor (GCD) of two integers , the largest number that divides them both without a remainder .
gcd(r, n) = 1 for each r in R, R contains φ(n) elements, no two elements of R are congruent modulo n. [1] [2] Here φ denotes Euler's totient function. A reduced residue system modulo n can be formed from a complete residue system modulo n by removing all integers not relatively prime to n. For example, a complete residue system modulo 12 is ...
A simple and sufficient test for the absence of a dependence is the greatest common divisor (GCD) test. It is based on the observation that if a loop carried dependency exists between X[a*i + b] and X[c*i + d] (where X is the array; a, b, c and d are integers, and i is the loop variable), then GCD (c, a) must divide (d – b).
In other words, every GCD domain is a Schreier domain. For every pair of elements x, y of a GCD domain R, a GCD d of x and y and an LCM m of x and y can be chosen such that dm = xy, or stated differently, if x and y are nonzero elements and d is any GCD d of x and y, then xy/d is an LCM of x and y, and vice versa.
Therefore, equalities like d = gcd(p, q) or gcd(p, q) = gcd(r, s) are common abuses of notation which should be read "d is a GCD of p and q" and "p and q have the same set of GCDs as r and s". In particular, gcd( p , q ) = 1 means that the invertible constants are the only common divisors.
Lehmer's GCD algorithm, named after Derrick Henry Lehmer, is a fast GCD algorithm, an improvement on the simpler but slower Euclidean algorithm. It is mainly used for big integers that have a representation as a string of digits relative to some chosen numeral system base , say β = 1000 or β = 2 32 .
By computing a gcd at this stage, we find a factor of 341: gcd(32 − 1, 341) = 31. Indeed, 341 = 11 × 31 . The same technique can be applied to the square roots of any other value, particularly the square roots of −1 mentioned in § Combining multiple tests .