Search results
Results from the WOW.Com Content Network
Source transformations are easy to compute using Ohm's law.If there is a voltage source in series with an impedance, it is possible to find the value of the equivalent current source in parallel with the impedance by dividing the value of the voltage source by the value of the impedance.
It is constructed from four resistors, two of known values R 1 and R 3 (see diagram), one whose resistance is to be determined R x, and one which is variable and calibrated R 2. Two opposite vertices are connected to a source of electric current, such as a battery, and a galvanometer is connected across the other two vertices. The variable ...
When there are dependent sources, the more general method must be used. The voltage at the terminals is calculated for an injection of a 1 ampere test current at the terminals. This voltage divided by the 1 A current is the Norton impedance R no (in ohms). This method must be used if the circuit contains dependent sources, but it can be used in ...
Graphical interpretation of the parallel operator with =.. The parallel operator ‖ (pronounced "parallel", [1] following the parallel lines notation from geometry; [2] [3] also known as reduced sum, parallel sum or parallel addition) is a binary operation which is used as a shorthand in electrical engineering, [4] [5] [6] [nb 1] but is also used in kinetics, fluid mechanics and financial ...
In a series circuit, the current that flows through each of the components is the same, and the voltage across the circuit is the sum of the individual voltage drops across each component. [1] In a parallel circuit, the voltage across each of the components is the same, and the total current is the sum of the currents flowing through each ...
These include resistors in series, resistors in parallel and the extension to series and parallel circuits for capacitors, inductors and general impedances. Also well known are the Norton and Thévenin equivalent current generator and voltage generator circuits respectively, as is the Y-Δ transform. None of these are discussed in detail here ...
The transfer function of an ideal diode has been given at the top of this (non-linear) section. However, this formula is rarely used in network analysis, a piecewise approximation being used instead. It can be seen that the diode current rapidly diminishes to -I o as the voltage falls. This current, for most purposes, is so small it can be ignored.
To calculate the current and voltage in them generally requires either graphical methods or simulation on computers using electronic circuit simulation programs like SPICE. However in some electronic circuits such as radio receivers , telecommunications, sensors, instrumentation and signal processing circuits, the AC signals are "small ...