Search results
Results from the WOW.Com Content Network
The cochlea is a portion of the inner ear that looks like a snail shell (cochlea is Greek for snail). [5] The cochlea receives sound in the form of vibrations, which cause the stereocilia to move. The stereocilia then convert these vibrations into nerve impulses which are taken up to the brain to be interpreted.
These microscopic structures possess stereocilia and one kinocilium which are located within the gelatinous otolithic membrane. The membrane is further weighted with otoliths. Movement of the stereocilia and kinocilium enable the hair cells of the saccula and utricle to detect motion.
The cochlea has three fluid-filled sections (i.e. the scala media, scala tympani and scala vestibuli), and supports a fluid wave driven by pressure across the basilar membrane separating two of the sections. Strikingly, one section, called the cochlear duct or scala media, contains endolymph. The organ of Corti is located in this duct on the ...
As acoustic sensors in mammals, stereocilia are lined up in the organ of Corti within the cochlea of the inner ear. In hearing, stereocilia transform the mechanical energy of sound waves into electrical signals for the hair cells, which ultimately leads to an excitation of the auditory nerve .
The cochlear duct is part of the cochlea. It is separated from the tympanic duct (scala tympani) by the basilar membrane. [2] It is separated from the vestibular duct (scala vestibuli) by the vestibular membrane (Reissner's membrane). [2] The stria vascularis is located in the wall of the cochlear duct. [2]
Video showing how sounds make their way from the source to the brain. Hearing, or auditory perception, is the ability to perceive sounds through an organ, such as an ear, by detecting vibrations as periodic changes in the pressure of a surrounding medium. [1] The academic field concerned with hearing is auditory science
Sound is the perceptual result of mechanical vibrations traveling through a medium such as air or water. Through the mechanisms of compression and rarefaction, sound waves travel through the air, bounce off the pinna and concha of the exterior ear, and enter the ear canal.
The cochlear nucleus is the first 'relay station' of the central auditory system and receives mainly ipsilateral afferent input. The three major components of the cochlear nuclear complex are (see figure below): the dorsal cochlear nucleus (DCN) the anteroventral cochlear nucleus (AVCN) the posteroventral cochlear nucleus (PVCN)