enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Material dispersion coefficient - Wikipedia

    en.wikipedia.org/.../Material_dispersion_coefficient

    In an optical fiber, the material dispersion coefficient, M(λ), characterizes the amount of pulse broadening by material dispersion per unit length of fiber and per unit of spectral width. It is usually expressed in picoseconds per ( nanometre · kilometre ).

  3. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    This formula generalizes the one in the previous section for homogeneous media and includes both waveguide dispersion and material dispersion. The reason for defining the dispersion in this way is that | D | is the (asymptotic) temporal pulse spreading Δ t per unit bandwidth Δ λ per unit distance travelled, commonly reported in ps /( nm ⋅ ...

  4. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  5. Dispersion (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(chemistry)

    A dispersion is a system in which distributed particles of one material are dispersed in a continuous phase of another material. The two phases may be in the same or different states of matter . Dispersions are classified in a number of different ways, including how large the particles are in relation to the particles of the continuous phase ...

  6. Diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Diffusion_equation

    where ϕ(r, t) is the density of the diffusing material at location r and time t and D(ϕ, r) is the collective diffusion coefficient for density ϕ at location r; and ∇ represents the vector differential operator del. If the diffusion coefficient depends on the density then the equation is nonlinear, otherwise it is linear.

  7. Refractive index and extinction coefficient of thin film ...

    en.wikipedia.org/wiki/Refractive_index_and...

    A. R. Forouhi and I. Bloomer deduced dispersion equations for the refractive index, n, and extinction coefficient, k, which were published in 1986 [1] and 1988. [2] The 1986 publication relates to amorphous materials, while the 1988 publication relates to crystalline.

  8. Dispersity - Wikipedia

    en.wikipedia.org/wiki/Dispersity

    In chemistry, the dispersity is a measure of the heterogeneity of sizes of molecules or particles in a mixture. A collection of objects is called uniform if the objects have the same size, shape, or mass. A sample of objects that have an inconsistent size, shape and mass distribution is called non-uniform.

  9. Finite volume method for two dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    We obtain the distribution of the property i.e. a given two dimensional situation by writing discretized equations of the form of equation (3) at each grid node of the subdivided domain. At the boundaries where the temperature or fluxes are known the discretized equation are modified to incorporate the boundary conditions.