enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/GaussLegendre_quadrature

    GaussLegendre quadrature is optimal in a very narrow sense for computing integrals of a function f over [−1, 1], since no other quadrature rule integrates all degree 2n − 1 polynomials exactly when using n sample points. However, this measure of accuracy is not generally a very useful one---polynomials are very simple to integrate and ...

  3. Gauss–Legendre method - Wikipedia

    en.wikipedia.org/wiki/GaussLegendre_method

    GaussLegendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of GaussLegendre quadrature. The GaussLegendre method based on s points has order 2s. [1] All GaussLegendre methods are A-stable. [2] The GaussLegendre method of order two is the implicit midpoint rule.

  4. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    This exact rule is known as the GaussLegendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1]. The GaussLegendre quadrature rule is not typically used for integrable functions with endpoint singularities ...

  5. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    The GaussLegendre methods use the points of GaussLegendre quadrature as collocation points. The GaussLegendre method based on s points has order 2s. [2] All GaussLegendre methods are A-stable. [3] In fact, one can show that the order of a collocation method corresponds to the order of the quadrature rule that one would get using the ...

  6. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    These zeros play an important role in numerical integration based on Gaussian quadrature. The specific quadrature based on the P n {\displaystyle P_{n}} 's is known as Gauss-Legendre quadrature . From this property and the facts that P n ( ± 1 ) ≠ 0 {\displaystyle P_{n}(\pm 1)\neq 0} , it follows that P n ( x ) {\displaystyle P_{n}(x)} has n ...

  7. Gauss–Laguerre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Laguerre_quadrature

    "Table of zeros and Gaussian Weights of certain Associated Laguerre Polynomials and the related Hermite Polynomials". Mathematics of Computation. 18 (88): 598– 616. doi: 10.1090/S0025-5718-1964-0166397-1. JSTOR 2002946. MR 0166397. Ehrich, S. (2002). "On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas".

  8. Gauss pseudospectral method - Wikipedia

    en.wikipedia.org/wiki/Gauss_pseudospectral_method

    An enhancement to the Chebyshev pseudospectral method that uses a Clenshaw–Curtis quadrature was developed. [18] The LPM uses Lagrange polynomials for the approximations, and LegendreGauss–Lobatto (LGL) points for the orthogonal collocation. A costate estimation procedure for the Legendre pseudospectral method was also developed. [19]

  9. Gauss–Legendre algorithm - Wikipedia

    en.wikipedia.org/wiki/GaussLegendre_algorithm

    The GaussLegendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...