Search results
Results from the WOW.Com Content Network
This page was last edited on 17 December 2020, at 23:46 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
There are two lists of mathematical identities related to vectors: Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...
These operations and associated laws qualify Euclidean vectors as an example of the more generalized concept of vectors defined simply as elements of a vector space. Vectors play an important role in physics: the velocity and acceleration of a moving object and the forces acting on it can all be described with vectors. [7]
R is both a language and software used for statistical computing and graphing. R was originally developed by Bell Laboratories (Currently known as Lucent Technologies) by John Chambers. Since R is largely written in C language, users can use C or C++ commands to manipulate R-objects directly. Also, R runs on most UNIX platforms.
Binary operations, on the other hand, take two values, and include addition, subtraction, multiplication, division, and exponentiation. [4] Operations can involve mathematical objects other than numbers. The logical values true and false can be combined using logic operations, such as and, or, and not. Vectors can be added and subtracted. [5]
In computer graphics, swizzles are a class of operations that transform vectors by rearranging components. [1] Swizzles can also project from a vector of one dimensionality to a vector of another dimensionality, such as taking a three-dimensional vector and creating a two-dimensional or five-dimensional vector using components from the original vector. [2]
The volume of this parallelepiped is the absolute value of the determinant of the 3-by-3 matrix formed by the vectors r 1, r 2, and r 3. The determinant det ( A ) of a square matrix A is a scalar that tells whether the associated map is an isomorphism or not: to be so it is sufficient and necessary that the determinant is nonzero. [ 47 ]