Search results
Results from the WOW.Com Content Network
The leading-order Feynman diagrams for electron capture decay. An electron interacts with an up quark in the nucleus via a W boson to create a down quark and electron neutrino. Two diagrams comprise the leading (second) order, though as a virtual particle, the type (and charge) of the W-boson is indistinguishable.
In the Stückelberg–Feynman interpretation, pair annihilation is the same process as pair production: Møller scattering: electron-electron scattering Bhabha scattering: electron-positron scattering Penguin diagram: a quark changes flavor via a W or Z loop Tadpole diagram: One loop diagram with one external leg Self-interaction or oyster diagram
Feynman diagram of electron/positron annihilation. The electron–positron annihilation interaction: e + + e − → 2γ. has a contribution from the second order Feynman diagram: In the initial state (at the bottom; early time) there is one electron (e −) and one positron (e +) and in the final state (at the top; late time) there are two ...
The leading-order Feynman diagrams for electron capture decay. An electron interacts with an up quark in the nucleus via a W boson to create a down quark and electron neutrino. Two diagrams comprise the leading (second) order, though as a virtual particle, the type (and charge) of the W-boson is indistinguishable. In all cases where β +
English: The leading-order Feynman diagrams for electron capture. An electron interacts with a down quark via a mediating W-boson to produce an up quark and anti-neutrino. An electron interacts with a down quark via a mediating W-boson to produce an up quark and anti-neutrino.
The Feynman diagram for beta-minus decay of a neutron (n = udd) into a proton (p = udu), electron (e −), and electron anti-neutrino ν e, via a charged vector boson (W −). In one type of charged current interaction, a charged lepton (such as an electron or a muon, having a charge of −1) can absorb a W +
The basic rule is that if we have the probability amplitude for a given complex process involving more than one electron, then when we include (as we always must) the complementary Feynman diagram in which we exchange two electron events, the resulting amplitude is the reverse – the negative – of the first.
English: The Feynman diagram en for the electron capture en. The up quark en in the proton, capturing an electron en , decays into an down quark en to make a neutron, emitting an electron neutrino en .