Search results
Results from the WOW.Com Content Network
t is the radial thickness of the cylinder; l is the axial length of the cylinder. An alternative to hoop stress in describing circumferential stress is wall stress or wall tension (T), which usually is defined as the total circumferential force exerted along the entire radial thickness: [3] = Cylindrical coordinates
The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by
Barlow's formula (called "Kesselformel" [1] in German) relates the internal pressure that a pipe [2] can withstand to its dimensions and the strength of its material.. This approximate formula is named after Peter Barlow, an English mathematician.
The walls of pressure vessels generally undergo triaxial loading. For cylindrical pressure vessels, the normal loads on a wall element are longitudinal stress, circumferential (hoop) stress and radial stress. The radial stress for a thick-walled cylinder is equal and opposite to the gauge pressure on the inside surface, and zero on the outside ...
Heisler charts allow the evaluation of the central temperature for transient heat conduction through an infinitely long plane wall of thickness 2L, an infinitely long cylinder of radius r o, and a sphere of radius r o. Each aforementioned geometry can be analyzed by three charts which show the midplane temperature, temperature distribution, and ...
The thermal boundary layer thickness, , is the distance across a boundary layer from the wall to a point where the flow temperature has essentially reached the 'free stream' temperature, . This distance is defined normal to the wall in the y {\displaystyle y} -direction.
In a piston engine, the bore (or cylinder bore) is the diameter of each cylinder. Engine displacement is calculated based on bore, stroke length and the number of cylinders: [ 1 ] displacement = π ( 1 / 2 × bore ) 2 × stroke × n cylinders
Due to the availability of standard wall thickness materials, many components will have a MAWP higher than the required design pressure. For pressure vessels, all pressures are defined as being at highest point of the unit in the operating position, and do not include static head pressure. [ 2 ]