Ad
related to: polyhedron vs polygon definition chemistry science experiment ideas 7th gradeeducation.com has been visited by 100K+ users in the past month
Education.com is great and resourceful - MrsChettyLife
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Educational Songs
Search results
Results from the WOW.Com Content Network
In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is a polyhedron that bounds a convex set.
Regular polyhedron. Platonic solid: Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron; Regular spherical polyhedron. Dihedron, Hosohedron; Kepler–Poinsot polyhedron (Regular star polyhedra) Small stellated dodecahedron, Great stellated dodecahedron, Great icosahedron, Great dodecahedron; Abstract regular polyhedra (Projective polyhedron)
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:
If only thirteen polyhedra are to be listed, the definition must use global symmetries of the polyhedron rather than local neighborhoods. In the aftermath, the elongated square gyrobicupola was withdrawn from the Archimedean solids and included into the Johnson solid instead, a convex polyhedron in which all of the faces are regular polygons. [16]
In its original definition, it is a polyhedron with regular polygonal faces, and a symmetry group which is transitive on its vertices; today, this is more commonly referred to as a uniform polyhedron (this follows from Thorold Gosset's 1900 definition of the more general semiregular polytope). [1] [2] These polyhedra include:
In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.
A cell is the three-dimensional analogue of a face, and is therefore a polyhedron. Each face must join exactly two cells, analogous to the way in which each edge of a polyhedron joins just two faces. Like any polytope, the elements of a 4-polytope cannot be subdivided into two or more sets which are also 4-polytopes, i.e. it is not a compound.
The polytopes of rank 2 (2-polytopes) are called polygons.Regular polygons are equilateral and cyclic.A p-gonal regular polygon is represented by Schläfli symbol {p}.. Many sources only consider convex polygons, but star polygons, like the pentagram, when considered, can also be regular.
Ad
related to: polyhedron vs polygon definition chemistry science experiment ideas 7th gradeeducation.com has been visited by 100K+ users in the past month
Education.com is great and resourceful - MrsChettyLife