enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    Enzyme kinetics is the study of the rates of enzyme-catalysed chemical reactions. ... The study of enzyme kinetics is important for two basic reasons. Firstly, it ...

  3. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    Curve of the Michaelis–Menten equation labelled in accordance with IUBMB recommendations. In biochemistry, Michaelis–Menten kinetics, named after Leonor Michaelis and Maud Menten, is the simplest case of enzyme kinetics, applied to enzyme-catalysed reactions involving the transformation of one substrate into one product.

  4. Reversible Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Reversible_Michaelis...

    Reversible Michaelis–Menten kinetics, using the reversible form of the Michaelis–Menten equation, is therefore important when developing computer models of cellular processes involving enzymes. In enzyme kinetics, the Michaelis–Menten kinetics kinetic rate law that describes the conversion of one substrate to one product, is often ...

  5. Specificity constant - Wikipedia

    en.wikipedia.org/wiki/Specificity_constant

    A comparison of specificity constants can also be used as a measure of the preference of an enzyme for different substrates (i.e., substrate specificity). The higher the specificity constant, the more the enzyme "prefers" that substrate. [1] The following equation, known as the Michaelis–Menten model, is used to describe the kinetics of enzymes:

  6. Eadie–Hofstee diagram - Wikipedia

    en.wikipedia.org/wiki/Eadie–Hofstee_diagram

    Eadie–Hofstee plot of v against v/a for Michaelis–Menten kinetics. In biochemistry, an Eadie–Hofstee plot (or Eadie–Hofstee diagram) is a graphical representation of the Michaelis–Menten equation in enzyme kinetics. It has been known by various different names, including Eadie plot, Hofstee plot and Augustinsson plot.

  7. Enzyme assay - Wikipedia

    en.wikipedia.org/wiki/Enzyme_assay

    Human enzymes start to denature quickly at temperatures above 40 °C. Enzymes from thermophilic archaea found in the hot springs are stable up to 100 °C. [13] However, the idea of an "optimum" rate of an enzyme reaction is misleading, as the rate observed at any temperature is the product of two rates, the reaction rate and the denaturation rate.

  8. Lineweaver–Burk plot - Wikipedia

    en.wikipedia.org/wiki/Lineweaver–Burk_plot

    While the Lineweaver–Burk plot has historically been used for evaluation of the parameters, together with the alternative linear forms of the Michaelis–Menten equation such as the Hanes–Woolf plot or Eadie–Hofstee plot, all linearized forms of the Michaelis–Menten equation should be avoided to calculate the kinetic parameters ...

  9. Direct linear plot - Wikipedia

    en.wikipedia.org/wiki/Direct_linear_plot

    The best known plots of the Michaelis–Menten equation, including the double-reciprocal plot of / against /, [2] the Hanes plot of / against , [3] and the Eadie–Hofstee plot [4] [5] of against / are all plots in observation space, with each observation represented by a point, and the parameters determined from the slope and intercepts of the lines that result.