enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Robert G. Bartle - Wikipedia

    en.wikipedia.org/wiki/Robert_G._Bartle

    Robert Gardner Bartle (November 20, 1927 – September 18, 2003) was an American mathematician specializing in real analysis. He is known for writing the popular textbooks The Elements of Real Analysis (1964), The Elements of Integration (1966), and Introduction to Real Analysis (2011) with Donald R. Sherbert, published by John Wiley & Sons .

  3. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    Known as Little Rudin, contains the basics of the Lebesgue theory, but does not treat material such as Fubini's theorem. Rudin, Walter (1966). Real and complex analysis. New York: McGraw-Hill Book Co. pp. xi+412. MR 0210528. Known as Big Rudin. A complete and careful presentation of the theory. Good presentation of the Riesz extension theorems.

  4. Principles of Mathematical Analysis - Wikipedia

    en.wikipedia.org/wiki/Principles_of_Mathematical...

    Rudin's text was the first modern English text on classical real analysis, and its organization of topics has been frequently imitated. [1] In Chapter 1, he constructs the real and complex numbers and outlines their properties. (In the third edition, the Dedekind cut construction is sent to an appendix for pedagogical reasons.)

  5. Glossary of real and complex analysis - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_real_and...

    An Introduction to Complex Analysis in Several Variables. Van Nostrand. Rudin, Walter (1976). Principles of Mathematical Analysis. Walter Rudin Student Series in Advanced Mathematics (3rd ed.). McGraw-Hill. ISBN 9780070542358. Rudin, Walter (1986). Real and Complex Analysis (International Series in Pure and Applied Mathematics). McGraw-Hill.

  6. Completeness of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Completeness_of_the_real...

    The real numbers can be defined synthetically as an ordered field satisfying some version of the completeness axiom.Different versions of this axiom are all equivalent in the sense that any ordered field that satisfies one form of completeness satisfies all of them, apart from Cauchy completeness and nested intervals theorem, which are strictly weaker in that there are non Archimedean fields ...

  7. Category:Real analysis - Wikipedia

    en.wikipedia.org/wiki/Category:Real_analysis

    Real analysis is a traditional division of mathematical analysis, along with complex analysis and functional analysis. It is mainly concerned with the 'fine' (micro-level) behaviour of real functions, and related topics. See Category:Fourier analysis for topics in harmonic analysis.

  8. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. [1] Some particular properties of real-valued sequences and functions that real analysis studies include convergence , limits , continuity , smoothness , differentiability and integrability .

  9. List of real analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_real_analysis_topics

    Convolution. Cauchy product –is the discrete convolution of two sequences; Farey sequence – the sequence of completely reduced fractions between 0 and 1; Oscillation – is the behaviour of a sequence of real numbers or a real-valued function, which does not converge, but also does not diverge to +∞ or −∞; and is also a quantitative measure for that.