Search results
Results from the WOW.Com Content Network
For functions of three or more variables, the determinant of the Hessian does not provide enough information to classify the critical point, because the number of jointly sufficient second-order conditions is equal to the number of variables, and the sign condition on the determinant of the Hessian is only one of the conditions.
The calculus of variations is concerned with the maxima or minima (collectively called extrema) of functionals. A functional maps functions to scalars, so functionals have been described as "functions of functions." Functionals have extrema with respect to the elements of a given function space defined over a given domain.
For a function of more than one variable, the second-derivative test generalizes to a test based on the eigenvalues of the function's Hessian matrix at the critical point. In particular, assuming that all second-order partial derivatives of f are continuous on a neighbourhood of a critical point x , then if the eigenvalues of the Hessian at x ...
The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.
Suppose that we wish to find the stationary points of a smooth function : when restricted to the submanifold defined by = , where : is a smooth function for which 0 is a regular value. Let d f {\displaystyle \ \operatorname {d} f\ } and d g {\displaystyle \ \operatorname {d} g\ } be the exterior derivatives of f {\displaystyle \ f ...
Let us first consider the case of univariate functions, i.e., functions of a single real variable. We will later consider the more general and more practically useful multivariate case. Given a twice differentiable function f : R → R {\displaystyle f:\mathbb {R} \to \mathbb {R} } , we seek to solve the optimization problem
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.
In mathematical analysis, the maximum and minimum [a] of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum, [b] they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function.