Search results
Results from the WOW.Com Content Network
The cardinality or "size" of a multiset is the sum of the multiplicities of all its elements. For example, in the multiset {a, a, b, b, b, c} the multiplicities of the members a, b, and c are respectively 2, 3, and 1, and therefore the cardinality of this multiset is 6.
HyperLogLog is an algorithm for the count-distinct problem, approximating the number of distinct elements in a multiset. [1] Calculating the exact cardinality of the distinct elements of a multiset requires an amount of memory proportional to the cardinality, which is impractical for very large data sets. Probabilistic cardinality estimators ...
A fuzzy set is a pair (,) where is a set (often required to be non-empty) and : [,] a membership function. The reference set (sometimes denoted by or ) is called universe of discourse, and for each , the value () is called the grade of membership of in (,).
Venn diagram showing the union of sets A and B as everything not in white. In combinatorics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as
Then an ordinal number is, by definition, a class consisting of all well-ordered sets of the same order type. To have the same order type is an equivalence relation on the class of well-ordered sets, and the ordinal numbers are the equivalence classes. Two sets of the same order type have the same cardinality.
In psychology, control is a person's ability or perception of their ability to affect themselves, others, their conditions, their environment or some other circumstance. Control over oneself or others can extend to the regulation of emotions , thoughts , actions , impulses , memory , attention or experiences .
The oldest definition of the cardinality of a set X (implicit in Cantor and explicit in Frege and Principia Mathematica) is as the set of all sets that are equinumerous with X: this does not work in ZFC or other related systems of axiomatic set theory because this collection is too large to be a set, but it does work in type theory and in New ...
In graph theory, the metric dimension of a graph G is the minimum cardinality of a subset S of vertices such that all other vertices are uniquely determined by their distances to the vertices in S. Finding the metric dimension of a graph is an NP-hard problem; the decision version, determining whether the metric dimension is less than a given ...