Search results
Results from the WOW.Com Content Network
By turning the rows into columns, we obtain the partition 4 + 3 + 3 + 2 + 1 + 1 of the number 14. Such partitions are said to be conjugate of one another. [6] In the case of the number 4, partitions 4 and 1 + 1 + 1 + 1 are conjugate pairs, and partitions 3 + 1 and 2 + 1 + 1 are conjugate of each other.
The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]
These two types of partition are in bijection with each other, by a diagonal reflection of their Young diagrams. Their numbers can be arranged into a triangle, the triangle of partition numbers , in which the n {\displaystyle n} th row gives the partition numbers p 1 ( n ) , p 2 ( n ) , … , p n ( n ) {\displaystyle p_{1}(n),p_{2}(n),\dots ,p ...
The nth number in this sequence also counts the number of partitions of n elements into subsets, where one of the subsets is distinguished from the others; for instance, there are 10 ways of partitioning three items into subsets and then choosing one of the subsets. [6]
In number theory, Glaisher's theorem is an identity useful to the study of integer partitions.Proved in 1883 [1] by James Whitbread Lee Glaisher, it states that the number of partitions of an integer into parts not divisible by is equal to the number of partitions in which no part is repeated or more times.
Generally, a partition is a division of a whole into non-overlapping parts. Among the kinds of partitions considered in mathematics are partition of a set or an ordered partition of a set, partition of a graph, partition of an integer, partition of an interval, partition of unity, partition of a matrix; see block matrix, and
4 + 1; 3 + 2; 2 + 3; 1 + 4. Compare this with the three partitions of 5 into distinct terms: 5; 4 + 1; 3 + 2. Note that the ancient Sanskrit sages discovered many years before Fibonacci that the number of compositions of any natural number n as the sum of 1's and 2's is the nth Fibonacci number!
An r-associated Stirling number of the second kind is the number of ways to partition a set of n objects into k subsets, with each subset containing at least r elements. [17] It is denoted by S r ( n , k ) {\displaystyle S_{r}(n,k)} and obeys the recurrence relation