Search results
Results from the WOW.Com Content Network
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
The operational calculus generally is typified by two symbols: the operator p, and the unit function 1. The operator in its use probably is more mathematical than physical, the unit function more physical than mathematical. The operator p in the Heaviside calculus initially is to represent the time differentiator d / dt .
Video: Keys pressed for calculating eight times six on a HP-32SII (employing RPN) from 1991. Reverse Polish notation (RPN), also known as reverse Łukasiewicz notation, Polish postfix notation or simply postfix notation, is a mathematical notation in which operators follow their operands, in contrast to prefix or Polish notation (PN), in which operators precede their operands.
In the mathematical field of numerical analysis, a Newton polynomial, named after its inventor Isaac Newton, [1] is an interpolation polynomial for a given set of data points.
Calculus can be applied to equations expressed in polar coordinates. [ 17 ] [ 18 ] The angular coordinate φ is expressed in radians throughout this section, which is the conventional choice when doing calculus.
Solving an interpolation problem leads to a problem in linear algebra amounting to inversion of a matrix. Using a standard monomial basis for our interpolation polynomial () = =, we must invert the Vandermonde matrix to solve () = for the coefficients of ().
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In complex analysis (a branch of mathematics), a pole is a certain type of singularity of a complex-valued function of a complex variable. It is the simplest type of non-removable singularity of such a function (see essential singularity).