Search results
Results from the WOW.Com Content Network
Evaluate the hyperparameter tuples and acquire their fitness function (e.g., 10-fold cross-validation accuracy of the machine learning algorithm with those hyperparameters) Rank the hyperparameter tuples by their relative fitness; Replace the worst-performing hyperparameter tuples with new ones generated via crossover and mutation
To confirm the model's performance, an additional test data set held out from cross-validation is normally used. It is possible to use cross-validation on training and validation sets, and within each training set have further cross-validation for a test set for hyperparameter tuning. This is known as nested cross-validation.
Cross-validation only yields meaningful results if the validation set and training set are drawn from the same population and only if human biases are controlled. In many applications of predictive modeling, the structure of the system being studied evolves over time (i.e. it is "non-stationary").
In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).
Instead of building the architecture, engineers adjust the final layers and perform hyperparameter tuning. The time and computational resources required are typically lower than training from scratch, as pre-trained models have already learned general features that only need refinement for the new task.
To lessen the chance or amount of overfitting, several techniques are available (e.g., model comparison, cross-validation, regularization, early stopping, pruning, Bayesian priors, or dropout). The basis of some techniques is to either (1) explicitly penalize overly complex models or (2) test the model's ability to generalize by evaluating its ...
Cross validation is a method of model validation that iteratively refits the model, each time leaving out just a small sample and comparing whether the samples left out are predicted by the model: there are many kinds of cross validation. Predictive simulation is used to compare simulated data to actual data.
In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling. It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap .