Search results
Results from the WOW.Com Content Network
In theoretical computer science, the continuous knapsack problem (also known as the fractional knapsack problem) is an algorithmic problem in combinatorial optimization in which the goal is to fill a container (the "knapsack") with fractional amounts of different materials chosen to maximize the value of the selected materials.
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.
The most common problem being solved is the 0-1 knapsack problem, which restricts the number of copies of each kind of item to zero or one. Given a set of items numbered from 1 up to , each with a weight and a value , along with a maximum weight capacity ,
The bin packing problem can also be seen as a special case of the cutting stock problem. When the number of bins is restricted to 1 and each item is characterized by both a volume and a value, the problem of maximizing the value of items that can fit in the bin is known as the knapsack problem.
de Bruijn's theorem: A box can be packed with a harmonic brick a × a b × a b c if the box has dimensions a p × a b q × a b c r for some natural numbers p, q, r (i.e., the box is a multiple of the brick.) [15]
A complexity class is a set of problems of related complexity. Simpler complexity classes are defined by the following factors: The type of computational problem: The most commonly used problems are decision problems. However, complexity classes can be defined based on function problems, counting problems, optimization problems, promise ...
Note: consider In the 2-weighted knapsack problem, where each item has two weights and a value, and the goal is to maximize the value such that the sum of squares of the total weights is at most the knapsack capacity: (,) + (,). We could solve it using a similar DP, where each state is (current weight 1, current weight 2, value).
More precisely, a problem is in sub-exponential time if for every ε > 0 there exists an algorithm which solves the problem in time O(2 n ε). The set of all such problems is the complexity class SUBEXP which can be defined in terms of DTIME as follows. [6] [19] [20] [21]