enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Features from accelerated segment test - Wikipedia

    en.wikipedia.org/wiki/Features_from_accelerated...

    Features from accelerated segment test (FAST) is a corner detection method, which could be used to extract feature points and later used to track and map objects in many computer vision tasks. The FAST corner detector was originally developed by Edward Rosten and Tom Drummond, and was published in 2006. [1]

  3. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...

  4. Kanade–Lucas–Tomasi feature tracker - Wikipedia

    en.wikipedia.org/wiki/Kanade–Lucas–Tomasi...

    In computer vision, the Kanade–Lucas–Tomasi (KLT) feature tracker is an approach to feature extraction. It is proposed mainly for the purpose of dealing with the problem that traditional image registration techniques are generally costly. KLT makes use of spatial intensity information to direct the search for the position that yields the ...

  5. Feature (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Feature_(computer_vision)

    Feature detection includes methods for computing abstractions of image information and making local decisions at every image point whether there is an image feature of a given type at that point or not. The resulting features will be subsets of the image domain, often in the form of isolated points, continuous curves or connected regions.

  6. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    In self-supervised feature learning, features are learned using unlabeled data like unsupervised learning, however input-label pairs are constructed from each data point, enabling learning the structure of the data through supervised methods such as gradient descent. [9] Classical examples include word embeddings and autoencoders.

  7. Dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Dimensionality_reduction

    Methods are commonly divided into linear and nonlinear approaches. [1] Linear approaches can be further divided into feature selection and feature extraction . [ 2 ] Dimensionality reduction can be used for noise reduction , data visualization , cluster analysis , or as an intermediate step to facilitate other analyses.

  8. Geometric feature learning - Wikipedia

    en.wikipedia.org/wiki/Geometric_feature_learning

    Geometric feature learning is a technique combining machine learning and computer vision to solve visual tasks. The main goal of this method is to find a set of representative features of geometric form to represent an object by collecting geometric features from images and learning them using efficient machine learning methods.

  9. Pattern recognition - Wikipedia

    en.wikipedia.org/wiki/Pattern_recognition

    Techniques to transform the raw feature vectors (feature extraction) are sometimes used prior to application of the pattern-matching algorithm. Feature extraction algorithms attempt to reduce a large-dimensionality feature vector into a smaller-dimensionality vector that is easier to work with and encodes less redundancy, using mathematical ...