Search results
Results from the WOW.Com Content Network
Gaussian elimination has O(n 3) complexity, but introduces division, which results in round-off errors when implemented using floating point numbers. Round-off errors can be avoided if all the numbers are kept as integer fractions instead of floating point. But then the size of each element grows in size exponentially with the number of rows.
If n = m, the case where A and B are square matrices, ([]) = {[]} (a singleton set), so the sum only involves S = [n], and the formula states that det(AB) = det(A)det(B). For m = 0, A and B are empty matrices (but of different shapes if n > 0), as is their product AB ; the summation involves a single term S = Ø, and the formula states 1 = 1 ...
The set of all doubly stochastic matrices is called the Birkhoff polytope, and the permutation matrices play a special role in that polytope. The Birkhoff–von Neumann theorem says that every doubly stochastic real matrix is a convex combination of permutation matrices of the same order, with the permutation matrices being precisely the ...
A permutation matrix is a (0, 1)-matrix, all of whose columns and rows each have exactly one nonzero element.. A Costas array is a special case of a permutation matrix.; An incidence matrix in combinatorics and finite geometry has ones to indicate incidence between points (or vertices) and lines of a geometry, blocks of a block design, or edges of a graph.
In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. [3] [4] Computing matrix products is a central operation in all computational applications of linear algebra.