Search results
Results from the WOW.Com Content Network
The dopamine neurons of the dopaminergic pathways synthesize and release the neurotransmitter dopamine. [2] [3] Enzymes tyrosine hydroxylase and dopa decarboxylase are required for dopamine synthesis. [4] These enzymes are both produced in the cell bodies of dopamine neurons. Dopamine is stored in the cytoplasm and vesicles in axon terminals.
The motor functions of dopamine are linked to a separate pathway, with cell bodies in the substantia nigra that manufacture and release dopamine into the dorsal striatum. Inside the brain, dopamine plays important roles in executive functions , motor control , motivation , arousal , reinforcement , and reward , as well as lower-level functions ...
Dopamine receptors are implicated in many neurological processes, including motivational and incentive salience, cognition, memory, learning, and fine motor control, as well as modulation of neuroendocrine signaling. Abnormal dopamine receptor signaling and dopaminergic nerve function is implicated in several neuropsychiatric disorders. [2]
More recent research and additional phenomena (resistance, potential, impedance, electrochemical skin conductance, and admittance, sometimes responsive and sometimes apparently spontaneous) suggest that EDA is more complex than it seems, and research continues into the source and significance of EDA.
The release of dopamine from the mesolimbic pathway into the nucleus accumbens regulates incentive salience (e.g. motivation and desire for rewarding stimuli) and facilitates reinforcement and reward-related motor function learning; [3] [4] [5] it may also play a role in the subjective perception of pleasure.
Additionally, outputs from the motor system can be used to modify the sensory system's response to future stimuli. [1] [2] To be useful it is necessary that sensory-motor integration be a flexible process because the properties of the world and ourselves change over time. Flexible sensorimotor integration would allow an animal the ability to ...
Electrochemical biosensors, based on enzymes, work through the enzymatic catalysis of reactions that directly or indirectly produce or consume electrons (such enzymes are rightly called redox enzymes). The sensor design usually consists of three electrodes; a reference electrode, a working electrode, and
In the spinal cord, sensory and motor signals are integrated and modulated by motor neuron pools called central pattern generators (CPGs). At the base level, sensory input is relayed by muscle spindles in the muscle and Golgi tendon organs (GTOs) in tendons, alongside cutaneous sensors in the skin.