Search results
Results from the WOW.Com Content Network
In control theory, a continuous linear time-invariant system (LTI) is exponentially stable if and only if the system has eigenvalues (i.e., the poles of input-to-output systems) with strictly negative real parts (i.e., in the left half of the complex plane). [1]
The Kolmogorov model addresses a limitation of the Volterra equations by imposing self-limiting growth in prey populations, preventing unrealistic exponential growth scenarios. It also provides a predictive model for the qualitative behavior of predator-prey systems without requiring explicit functional forms for the interaction terms. [ 5 ]
Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. [1] Most commonly apparent in species that reproduce quickly and asexually , like bacteria , exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself.
This model is often referred to as the exponential law. [5] It is widely regarded in the field of population ecology as the first principle of population dynamics, [6] with Malthus as the founder. The exponential law is therefore also sometimes referred to as the Malthusian Law. [7]
The exponential growth model can be modified to account for this, by tracking the number of individuals in different age classes (e.g. one-, two-, and three-year-olds) or different stage classes (juveniles, sub-adults, and adults) separately, and allowing individuals in each group to have their own survival and reproduction rates.
Population dynamics overlap with another active area of research in mathematical biology: mathematical epidemiology, the study of infectious disease affecting populations. Various models of viral spread have been proposed and analysed, and provide important results that may be applied to health policy decisions. [citation needed]
When the per capita rate of increase takes the same positive value regardless of population size, the graph shows exponential growth. Exponential growth takes on the assumption that there is unlimited resources and no predation. An example of exponential population growth is that of the Monk Parakeets in the United States.
The model was later extended to include density-dependent prey growth and a functional response of the form developed by C. S. Holling; a model that has become known as the Rosenzweig–MacArthur model. [21] Both the Lotka–Volterra and Rosenzweig–MacArthur models have been used to explain the dynamics of natural populations of predators and ...